New Type of Open Sets in Bitopological spaces

Ruma K. Ajeena Dept. of Mathematical College of Education University of Babylon

Abstract:

Many types of open set in Bitopological space defined by the mathematician in our paper new type of open set in Bitopological spaces defined in which is called K-open set.

1. Introduction:

A Bitopological Spaces (X, T_1, T_2) [1] is anon empty set X with two topologies T_1 and T_2 on X. Bitopological spaces defined by J. N. Kelly [2]. After that a different definition and studies in Bitopological spaces appears.

In this research we define a new set in Bitopological Space which called it K-open set and by using this set we define K-connected, K-compact, K-continuous and K-separation axiom. We study some theorems by using these definitions.

2. Basic Definition:

Definition 2.1: Let X be any non –empty set and T_1 , T_2 are two topological space on X, then (X, T_1 , T2) be a Bitopological space. A sub set A of X is called to be K- open set in Bitopological space X if for each $x \in A \exists u \in T_1$ such that int $T_2(u) \subseteq A$.

Example 2.1: Let $X = \{a, b, c\}$, $T_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $T_2 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ then K.O(X) = $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

Example 2.2: Let $X = \{a, b, c\}$, $T_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $T_2 = \{X, \phi, \{a, c\}\}$ then K.O(X) = $\{X, \phi\}$.

Remark 2.1: The set of all open sets is a topological space.

Remark 2.2:

a- If A is T_i - open set, i = 1, 2 then A is K- open set.

b- If A is T_i – open set, i = 1 or 2 then it is not necessary that A is K- open set.

Example 2.4: See example (2.1) and (2.2).

Remark 2.3: If $T_1 \subset T_2$ then every T_1 - open set is open set in Bitopological space (X, T_1, T_2).

Theorem 2.1: Every T_1 - open set is open set in Bitopological space (X, T_1, T_2).

Proof: Let $A \subseteq X$ and A is T_1 – open set then int $T_2(A) \subseteq A$ Then A is K – open set. **3. Continuous:**

Definition 3.1: A mapping F: $(X, T_1, T2) \rightarrow (Y, P_1, P_2)$ is said to be

- 1. K continuous if for each $x \in X$ and K open set V in Y such that $F(x) \in V$ there exist K – open set U such that $F(U) \in V$.
- 2. K- open mapping iff F(U) is K open set in Y for each K open set U in X.
- 3. K- closed mapping iff F(U) is K closed set in Y for each K closed set U in X.
- 4. K Homeomorphism iff F: $x \rightarrow y$ is K- continuous, 1-1.

Theorem 3.1: If g: $(X, T_1, T_2) \rightarrow (Y, P_1, P_2)$ is K- continuous then g: $(X, T_1, T_2) \rightarrow (Y, P_1)$ is continuous.

Proof: Let U is P_1 - open set then U is K-open set in Y and since g is K-continuous. Then g⁻¹(U) is K- open set in X.

Theorem 3.2: the composition of two K-continuous functions is K-continuous.

Proof: The same proof in Sharma with replace open set by K-open set.

4. Connected and Compact:

Definition 4.1: A sub sets A, B of X are said to be separated in (X, T_1, T_2) iff A, B are T_i - separated, i = 1, 2.

Example 4.1: Let X = { a, b, c}, $T_1 = \{ X, \phi, \{a\}, \{b, c\}\} = T_2, \{a\}, \{b, c\}$ are separated in (X, T_1, T_2)

Definition 4.2: A Bitopological space (X, T_1, T_2) is say to be connected iff for each two K.O(X) A and B then $A \cap B = \phi$, $A \cap CL(B) = \phi$ and $B \cap CL(A) = \phi$.

Example 4.2 : Let $X = \{a, b, c\}$, $T_1 = \{X, \phi, \{a\}\}$ and $T_2 = \{X, \phi, \{c\}, \{a, b\}\}$ are connected topologies space. Then K.O(X) = $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$.

Remark 4.1 : If (X, T_i) is a connected topological spaces, i = 1, 2 then it is not necessary that (X, T_1, T_2) is a connected topological space.

Example 4.3 : See example (2.2).

Definition 4.3: A Bitopological space (X , T_{1} , T_{2}) is say to be compact iff (X, T_{i}) is compact, i = 1, 2.

Example 4.4 : Let $X = \{a, b\}, T_1 = \{X, \phi\}, T_2 = \{X, \phi, \{a\}\}$. Then (X, T_1, T_2) is a compact Bitopological space.

5. Separation Axiom:

Definition 5.1 : A Bitopological space (X, T_1, T_2) is said to be K- T_0 (re sp K- T_1 , K-T₂) iff for each two points x, y in X there exist K- T_0 – open set G such that $x \in G$, $y \notin G$ or there exist K- T_0 – open set H such that $x \notin H$, $y \in H$. (rep for each two points x, y in X, there exist two K- open sets G, H such that $x \in G$, $y \notin G$, $x \notin H$, $y \in H$, for each two points x, y in X there exist two K- open sets G, H such that $x \in G$, $y \notin G$, $x \notin H$, $y \in H$, for each two points x, y in X there exist two K- open sets G, H such that $x \in G$, $y \notin H$, $y \in H$, for each two points x, y in X there exist two K- open sets G, H such that $x \in G$, $y \notin H$, $y \in H$, for each two points x, y in X there exist two K- open sets G, H such that $x \in G$, $y \in H$, $G \cap H = \phi$).

Example 5.1 : Let (X, P_1, P_2) be a Bitopological space and If P_2 is finer than P_1 and P_2 is T_0 (resp T_1, T_2) then (X, T_1, T_2) is K- T_0 (resp K- T_1 , K- T_2 -space)

Example 5.2: Let $X = \{a, b, c\}$, $P_1 = \{X, \phi, \{a\}\}$ and $P_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then (X, T_1, T_2) is K- T_0 , K- T_1 and K- T_2 , where P_2 is T_0, T_1 and T_2 .

Definition 5.2: A Bitopological space (X , T_1, T_2) is said to be K- regular space iff for each $x \in X$ and T_i – closed set F, i = 1 or 2 such that $x \notin F$. There exist two K-open sets G, H such that $x \notin G$, $F \subset H$, $G \cap H = \phi$.

Example 5.3: If P_2 is finer than P_1 then if P_2 regular space .Then $(X , T_{1,} T_2)$ is K-regular space.

Definition 5.3: A Bitopological space (X , P_{1} , P_{2}) is said to be K- T_{3} space if (X , P_{1} , P_{2}) is K- T_{1} and K- regular space.

Theorem 5.1: Let (X, P_1, P_2) be K- T_1 Bitopological space $Y \subseteq X$ is K-open set of X then (Y, T_{1Y}, T_{2Y}) is K- T_1 space.

Proof: Let (Y, P_{1Y_1}, P_{2Y}) is subspace of (X, P_1, P_2) and $y_1, y_2 \in Y$ then $y_1, y_2 \in X$, X is K- $T_1 \Rightarrow \exists$ K-open set U such that $y_1 \in U$, $y_2 \notin U \Rightarrow y_1 \in U \cap Y$, $y_2 \notin U \cap Y$ and since U \cap Y is K-open set $\Rightarrow (Y, T_{1Y_1}, T_{2Y})$ is K- T_1 space.

Theorem 5.2: Let (X, P_1, P_2) be K- regular Bitopological space and $Y \subseteq X$ such that Y is K-open set .then (Y, T_{1Y}, T_{2Y}) is regular space.

Proof: Let $y \in Y$, F is T_i – closed set, i =1 or 2 such that $y \notin F$ then since $y \in X$ and F is T_i – closed set. Then $\exists U_1, U_2$ are K-open sets such that $y \in U_1, F \subseteq U_2, U_1 \cap U_2 = \phi$. Thus (Y, T_{1Y}, T_{2Y}) is K- regular space.

Theorem 5.3: If (X, P_1) is T_0, T_1, T_2 space then (X, P_1, P_2) is K- T_0 (K- T_1, K - T_2).

Proof: Let $x, y \in X$ and $x \neq y$. Since (X, P_1) is $T_0($ resp. $T_1, T_2)$ then \exists

P₁-open set u (resp. \exists P₁-open set u₁, u₂, \exists P₂-open set u₁, u₂) such that $x \in u, y \notin u$ (resp. $x \in u_1, y \in u_2, y \notin u_1, x \notin u_2, x \in u_1, y \in u_2, u_1 \cap u_2 = \phi$) and since every P₁-open set is K- open set then (X, P₁, P₂) is K- T₀ (K-T₁, K-T₂).

Definition 5.4: A Bitopological space (X , T_1, T_2) is said to be Normal space iff for each two T_i – closed sets F_1 , F_2 , i= 1 or 2. There exist two K- open sets G, H such that $F_1 \subseteq G, F_2 \subseteq H, G \cap H = \phi$.

Theorem 5.4: If (X, T_1) is regular (resp. Normal) then (X, T_1, T_2) is regular (resp. Normal).

Proof: Let $x \in X$ and F is T_1 - closed set such that $x \notin F$. Since (X, T_1) is regular then there exist two open sets G, H such that $x \in G$, $F \subseteq H$, $G \cap H = \phi$. And since every T_1 open set is K- open set then (X, T_1, T_2) is K- regular space. Now to prove the normality, let F_1 , F_2 are T_1 - closed sets. Since (X, T_1) is Normal space, there exist two T_1 - open sets G, H such that $F_1 \subseteq G$, $F_2 \subseteq H$, and $G \cap H = \phi$. Since every T_1 - open set is K- open set then (X, T_1, T_2) is K- Normal space.

Theorem 5.5: K-T₀, K-T₁, K-T₂, K-T₃, K-T₄ are topological properties.

Proof: We use the same proof in [3] with replacing every open set by K – open set.

Theorem 5.6: Let (X, T_1, T_2) be a Bitopological space then (X, T_1, T_2) is K- T_1 - space iff every singleton subset of X is closed set.

Proof: The same proof in Sharma with replace every open set by K-open set.

Definition 5.5: Let $(X, T_{1,} T_2)$ be a Bitopological space and $Y \subseteq X$ then the subspace defined by (Y, T_{1Y}, T_{2Y}) and $T_{1Y} = \{G \cap Y:G \text{ is } T_1 \text{ - open set}\}, T_{2Y} = \{H \cap Y:H \text{ is } T_2 \text{ - open set}\}.$

Theorem 5.7: A T_i – closed subspace (Y , T_{1Y_i} T_{2Y}) of a normal Bitopological space (X , T_1 , T_2) is normal when Y is K-open set.

Proof: Let Y is T_i – closed set and B_1 , B_2 are T_{iY} – closed set, i = 1 or 2. Since $B_1 = Y \cap F_1$, $B_2 = Y \cap F_2$, Y is T_i – closed set and (X, T_1 , T_2) is normal, $\Rightarrow \exists$ K-open sets H_1 , H_2 such that $B_1 \subseteq U$, $B_2 \subseteq V$, $H_1 \cap H_2 = \phi$, $Y \cap F_1 \subseteq H_1$, $Y \cap F_2 \subseteq H_2 \Rightarrow$ $B_1 \subseteq U \cap Y$, $B_2 \subseteq V \cap Y$. **Performant**

Reference:

[1] Al – talkany. Y. K., "Study Special Case of Bitopological Spaces ", Journal of Babylon university, 2005.

[2] J. C. Kelly., "Bitopological Spaces", Pro. London M ath. Soc. 13 (1963), 71-89.

[3] J. N. Sharama, "Topology", Meerut College, Meerut, 1977.