On Weakly ij-Open Functions In Bitopological Spaces By Khalid shea Al-Shukree

:Abstract

In this work, we study new characterizations of weakly ij-open function. Also we study the relation between the weakly ij-open function and ij- contra-closed function and proved that if f is a ij- contra- open function and ij-pre - open, then f is i-open .function

Introduction: Kelly in 1963 [2], defined a set equipped with two topologies is called -1 a bitopological spaces denoted by (X, τ_1, τ_2) where (X, τ_1) and (X, τ_2) are two topological spaces. The concept of almost -s-continuous functions introduced by Noiri and Khan in [4] and the concept of weakly continuous functions was introduced by Levine in [3]. In this paper we proved some properties of weakly ij- open functions . Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X the closure of A and

the interior of A with respect to τ_i are denoted by $\overline{(A)}^i$ and $(A)^{\mathbb{N}_i}$ respectively for i=1,2 :Preliminaries -2

Definitions(2-1)[1]: A subset A of a bitopological space X is said to be ij-semi open set if $A \subset \overline{((A^{\mathbb{N}_i}))}^j$ for $i \neq i$ and i, j = 1.2

Definition(2-2)[5]: A subset A of a bitopological space X is said to be ij-
$$\alpha$$
-open set if

 $A \subset (\overline{(A^{\mathbb{N}_i})}^J)^{\mathbb{N}_i}$ for $i \neq j$ and i, j = 1, 2Definition(2-3)[5]: A subset A of a bitopological space X is said to be ij- pre-open set if $A \subset (\overline{(A)}^{j})^{\mathbb{N}_{i}}$ for $i \neq j$ and i, j = 1, 2

Now we give the following definitions Definition (2-4): Let f: (X, τ_1, τ_2) (X, σ_1, σ_2) be a function then f is said to be .ij-semi open if for each τ_i -open set U of X , f(U) is ij- semi open set in Y Definition (2-5): Let f: (X, τ_1, τ_2) (X, σ_1, σ_2) be a function then f is said to be .ij-pre- open if for each τ_i -open set U of X, f(U) is ij- pre- open set in Y Definition (2-6): Let f: (X, τ_1, τ_2) (X, σ_1, σ_2) be a function then f is said to be $f(U) \subset (\overline{(f(U))}^{j})^{\mathbb{N}_{i}}$, weakly ij- open if for each τ_{i} -open set U of X Definition (2-7)[4]: Let f: $(X, \tau_1, \tau_2) \longrightarrow (X, \sigma_1, \sigma_2)$ be a function then f is said to be .ij- contra closed if f(U) is σ_i - open in Y for every τ_i -closed set U in X Definition (2-8)[4]: Let f: $(X, \tau_1, \tau_2) \longrightarrow (X, \sigma_1, \sigma_2)$ be a function then f is said to be .ij- contra open if f(U) is σ_i - closed in Y for every τ_i -closed set U in X :Some New Characterizations of Weakly ij-Open Function -3 :Now we give the following propositions

Proposition (3-1): Let f: (X, τ_1, τ_2) (X, σ_1, σ_2) be a function then the following : properties are equivalent

a) f is weakly ij-open function

 $\overline{(f(U^{\mathbb{N}_i})^j} \subset f(U)$, b) for every τ_i - closed set U in X

 $\overline{(f(U))}^i \subset f(\overline{U}^i)$, c) for every τ_i - open set U in X

Proof: (a) (b) Suppose that U is τ_i - closed set in X then X-U is τ_i - open set in X and hence $X - f(U) = f(X - U) \subset (f(\overline{X - U})^j)^{\bigotimes_i} = (f(X - (U)^{\bigotimes_i})^{\bigotimes_i} = (Y - f(U^{\bigotimes_i}))^{\bigotimes_i} = (Y - f(U^{\bigotimes_i}))^{\bigotimes_i}$

b) (c) Suppose that U be any τ_i - open set in X then from (b) we get)

$$f(\overline{U}^{i}) \ \overline{(f(U))}^{i} \subset \text{ and hence } \subset f(\overline{U}^{i}) \ \overline{(f(U^{M_{j}}))}^{i} \subset \overline{(f((\overline{U})^{M_{j}}))}^{i} \ \overline{(f(U))}^{i} =$$

 $= (\overline{f(X - (\overline{U}^{j}))}^{i})^{i} \subset f((\overline{X - (\overline{U})}^{j})^{i})^{i} = f(X - ((\overline{U})^{j})^{\bigotimes_{i}})^{\bigotimes_{i}} \subset f(X - U^{\bigotimes_{i}}) = (\overline{Y - f(\overline{U}^{j})})^{i} = Y - (f(\overline{U}^{j})^{\bigotimes_{i}})^{\bigotimes_{i}}$ and hence $f(U) \subset (f(\overline{U}^{j}))^{\bigotimes_{i}}$. therefore f is weakly ij-open f(X - U) = Y - f(U)

Proposition (3-2): Let f: $(X, \tau_1, \tau_2) - (X, \sigma_1, \sigma_2)$ be a function if for every ij- α -open .set U, $f(U) \subset (f(\overline{U}^j))^{\otimes i}$ then f is weakly ij-open

Proof: Suppose that U is τ_i - open set in X then U is ij- α -open set in X and hence from definition of ij- α -open set we get $f(U) \subset (f(\overline{U}^j))^{\mathbb{N}_i}$ and hence f is weakly ij-open function.

Proposition (3-3): Let f: $(X, \tau_1, \tau_2) \longrightarrow (X, \sigma_1, \sigma_2)$ be a function if f is weakly ij-open $f(U^{\mathbb{N}_i}) \subset (f(U))^{\mathbb{N}_i}$, function then for every τ_j - closed set U in X

Proof: Suppose that f is weakly ij-open function and let U is τ_j - closed set U in X then U^{\boxtimes_i} τ_i - open set in X and since f is weakly ij-open function then $f(U^{\boxtimes_i}) \subset (f((U^{\boxtimes_i}))))^{\boxtimes_i} \subset (f(U))^{\boxtimes_i}$

. Proposition (3-4): Every ij - contra - closed function is weakly ij - open

Proof: Let Let f: (X, τ_1, τ_2) \longrightarrow (X, σ_1, σ_2) be a ij- contra closed function and let U be any τ_i - open set in X and hence \overline{U}^j is τ_i - closed set in X, then $f(U) \subset f(\overline{U}^j) \subset (f(\overline{U}^j))^{\mathbb{N}_i}$ then from definition (2-6) f is weakly ij- open function

Proposition(3-5): Let f: (X, τ_1, τ_2) (X, σ_1, σ_2) be a ij- contra- open function and .ij-pre - open ,then f is i-open function

Proof: Let U be any τ_i - open set in X, since f is ij- pre-open then from definition (2-5) $f(U) \subset \overline{((f(U))}^{j})^{\bigotimes_{i}}$ and since f is ij- contra-open function then f(U) is σ_i - closed set in Y, therefore $f(U) \subset \overline{((f(U))}^{j})^{\bigotimes_{i}} = (f(U))^{\bigotimes_{i}}$, hence f(U) is σ_i - open in Y and f is i-open .function Corollary(3-6): Let U be any ij-pre-open and $f(U) \subset (f(\overline{U}^{j}))^{\bigotimes_{i}}$, then $f(U) \subset (f(\overline{U}^{j}))^{\bigotimes_{i}}$. . for every ij- α -open set is ij-pre-open set then we get the result Corollary(3-7): Let f: $(X, \tau_1, \overline{\tau_2})^{----}$ (X, σ_1, σ_2) be a function and Let U be any .ij-pre-open, $f(U) \subset (f(\overline{U}^{j}))^{\bigotimes_{i}}$, then f is weakly ij-open function . (Proof: It is easy from the corollary(3-6) and proposition(3-2) Proposition(3-8): Let f: $(X, \tau_1, \tau_2)^{-----}$ (X, σ_1, σ_2) be a ij-semi-open function , then $(\overline{(f(U))}^{i})^{\bigotimes_{i}} \subset f(U)$, for every τ_i - closed set U in X Proof: Let U be any τ_i - closed set U in X then X - U is τ_i - open set U in X and since f is ij-semi-open function then $f(X - U) \subset \overline{((f(X - U))^{\bigotimes_{i}}}^{j}$, hence Y - fU) = $f(X - U) \subset \overline{((f(X - U))^{\bigotimes_{i}}}^{i} - \overline{((Y - f(U))^{\bigotimes_{i}}}^{j} - Y - (\overline{(f(U))})^{\bigotimes_{i}}}^{i}$, hence

$$f(X-U) \subset \left(\left(f(X-U)\right)^{\bigotimes_{i}^{J}} = \left(\left(Y-f(U)\right)^{\bigotimes_{i}^{J}} = Y-\left(\overline{\left(f(U)\right)}^{i}\right)^{\bigotimes_{j}^{J}}, \text{ hence}\right)$$

References

Boss,S " Almost Open,Almost Closed, and Almost Compact Mapping in Bitopological Spaces" [1] Bull.clcutta math.soc 73 (1981),345-354.

.Kelly.C "Bitopological Spaces" proc.London math.soc.13(1963)71-89 [2]

Levine,N" A decomposition of Continuity in Topological Spaces" Amer.math.monthly[3] .68(1961),44-46

.Noiri.T." Almost s-Continuous Functions " kyung-pook math.J, 35(1995),311-322 [4]

"Rose.A." On Weak Openness and Almost Openness [5]

.Int.J.math.sci.7(1998),35-40

مجلة كلية التربية/بابل