Sum and Direct Sum in VN-Regular Fuzzy Ring

Hassan'a Hassan Shaheed Babylon University Department of Mathematics

<u>Abstract:-</u>

In this paper, by using defintions of fuzzy ring , fuzzy ideals , Von Neumann regular fuzzy ring and some properties about them we study sum and direct sum of fuzzy ring and VN-regular fuzzy ring .

1. Introduction:-

The concept of fuzzy set defined by Zadeh,[1] ,he define fuzzy singleton and fuzzy zero singleton of a fuzzy number .The fuzzy ring and fuzzy ideal were introduced by [Liu,1982] .Also, we define regular fuzzy ring and Von Neumann regular fuzzy ring,which denoted by VN-regular fuzzy ring .We will define the sum and direct sum of fuzzy ideals of fuzzy ring of a ring R and prove that :-A=J+K if and only if $A_t=(J+K)_t=J_t+K_t$, and $J^{\boxtimes} K=0_t$ if and only if $(J^{\boxtimes} K)_t=0=J_t^{\boxtimes} K_t$. A=J+K and $J^{\boxtimes} K=0_t$ if and only if $A_t=J_t+K_t$ and $J_t^{\boxtimes} K_t=0$. $A=J \oplus K$ if and only if $A_t=(J \oplus K)_t=J_t \oplus K_t$ for all $t \in [0,1]$, when A_t is the level of A also, J_t , K_t are the levels of J,K respectively.Beside that we will prove some properties about sun and direct sum of VN-regular fuzzy ring .

2.Fzzy Set and Fuzzy Ring.

Definition 2.1 [1] :-Let R be a non – empty set, I be the closed interval [0,1] of the real line (real number). A **fuzzy set** A in R (a fuzzy subset A of R) is characterized by a membership function A:R \rightarrow I which is associated with each point x \in R its grade or degree of membership $A(x) \in [0,1]$.

Definition 2.2[1]:-Let $x_t: R \to I$ be a fuzzy set in R , where $x \in R$, for all $t \in [0,1]$, define by

t if x=y $x_t \neq 0$ if x=y for all y $\in \mathbb{R}$. Than x_t is called a **fuzzy singleton**. Let $\mathbb{R} = 1\mathbb{R}$ and if x = 0 and t = 1, then $\begin{array}{c}
1 & \text{if } y=0 \\
0 & \text{if } y\neq 0
\end{array}$

We shall call such fuzzy singleton . The fuzzy zero singleton of fuzzy numbers .

Definition 2.3 [2] :- Let (R,+,.) be a ring and let A be a fuzzy set in R. Then A is called **fuzzy ring** in a ring (R,+,.), if and only if for each $x, y \in R$:-

1- $A(x+y) \ge \min \{A(x), A(y)\}$. 2- A(x) = A(-x). 3- $A(xy) \ge \min \{A(x), A(y)\}$.

Definition 2.4 [5] :- Let A be a fuzzy ring . If $t \le A(0)$ then the set $\{ x \in R : A(x) \ge t \}$ is a subring of R which is called the level subring and denoted by A_t .

Definition 2.5 [2] :-A fuzzy set A of a ring R is called a fuzzy ideal of R if for each x , $y \in R$:-

 $\begin{array}{l} 1\text{-}A(x\text{-}y) \geq \min \{ A(x) , A(y) \} \\ 2\text{-}A(xy) \geq \max \{ A(x) , A(y) \} . \end{array}$

Definition 2.6 [4] :- Let A be a fuzzy left (right) ideal of R ,then the left (right) ideals A_t , where $t \in [0,1]$ are called level ideals.

Theorem 2.7[3]:Let A : $R \rightarrow I$ be a fuzzy ring and J,K be two fuzzy ideals of A.Then,

1- $J \cap K$ is a fuzzy ideal of A.

2- $J \cup K$ is a fuzzy ideal of A if $J \subseteq K$ or $K \subseteq J$.

3. Sum and Direct Sum in VN-Regular Fuzzy Ring

In this section we define sum and direct sum in VN-regular fuzzy ring and study some properties about them .

Definition 3.1[3]:- Let J,K be two fuzzy ideals of a fuzzy ring A of a ring R.Then the sum two ideals J+K is define as :-

 $(J+K)(x)=\sup\{\min\{J(a),K(b)\} \mid x=a+b, \forall a,b \in R\}.$

Proposition 3.2[3]:- Let J,K be two fuzzy ideals of a fuzzy ring A of a ring R.Then J+K is fuzzy ideal of A.

Definition 3.3 [4] :-Let A be a fuzzy ring of a ring R and $x_t \in A$ with $t \in [0,1], x_t$ is said to be a regular fuzzy element (singleton) if there exists $y_t \in A$, with $s \in [0,1]$, such that $x_t = x_t \cdot y_s \cdot x_t$

Definitions 3.4[5] :-A is called **VN-regular fuzzy ring** if and only if every fuzzy singleton in A is a regular fuzzy element (singleton), i.e $\forall x_t \in A$, with $t \in [0,1]$, $\exists y_s \in A$, with $s \in [0,1]$, such that $x_t = x_t \cdot y_s \cdot x_t$

Proposition 3.5:- A is VN-regular fuzzy ring of R if and only if A_t is VN regular subring of R, for each $t \in [0,1]$.

Definitions 3.6 [5]:- Let A be fuzzy ring of R, $x_t \subseteq A$ where $t \in [0,1]$. x_t is said to be idempotent fuzzy singleton if and only if $x_t = (x_t)^2$ where $(x_t)^2 = x_t$. $x_t = (x x_t) = x_t$.

Definition 3.7[5]:-Given an idempotent fuzzy singleton e_t , we define A.e_t to be the set of all x_t in A with $e_t \cdot x_t = x_t$. $e_t = x_t \cdot (i.e A.e_t = \{x_t \in A : x_t = e_t \cdot x_t = x_t. e_t\})$.

Proposition 3.8[5]:-Let A be a VN-regular fuzzy ring of a ring R,then $A.e_t$ is also VN-regular fuzzy ring.

Proposition 3.9:- Level of the coset is coset of the level. i.e $(a_tA)_t = aA_t$ for each $t \in [0,1]$. **Proof:-** See [5]

Preposition 3.10:- In VN-regular fuzzy ring every finitely generated right(left) fuzzy ideal is principal.

Proof:Let A be a VN-regular fuzzy ring and let the left fuzzy ideal a_tA+b_tA implies that A_t is VN-regular subring and aA_t+bA_t is teft ideal in A_t , then $aA_t+bA_t=eA_t$ implies that $(a_tA+b_tA)_t = (e_tA)_t$ for all $t \in [0,1]$. Since $(a_tA+b_tA)_t = aA_t+bA_t$ and $(e_tA)_t = eA_t$. So $a_tA+b_tA = e_tA$ for all $t \in [0,1]$.

Definition 3.11:-Let A be a fuzzy ring of a ring R. A is called fuzzy ring dirict sum of two fuzzy ideals $J,K \subseteq A$ such that $A=J \oplus K$ if and only if A=J+K and $J \boxtimes K=0_t$.

Proposition 3.12[5]:-If J,K \subseteq A are two fuzzy ideals in A and A=J \oplus K then A_t=(J \oplus K)_t.and 1.(J+K)_t=J_t+K_t 2. J \boxtimes K =0_t if and only if J_t \boxtimes K_t=0

Proposition 3.13:- A fuzzy ring A of a ring R isVN-regular fuzzy ring if and only if every principal fuzzy ideal is a direct sum.

Proof: Let A be a VN-regular fuzzy ring. Then A_t is VN-regular subring of a ring R implies that $eA_t = aA_t$ for any $a \neq 0$ in $A_t \subseteq R$ Hence A_t is a direct sum, i.e $A_t = aA_t \oplus (1 - e)A_t$. Since $aA_t = (a_tA)_t$ and $(1-e)A_t = ((1 - e)_tA)_t$. So $A = a_tA \oplus (1-e)_tA$ for all $t \in [0,1]$. So a_tA is a direct sum.

Concersely, let $A = a_t A \oplus J$ for every principale fuzzy ideal J of A. Then $A_t = aA_t \oplus J_t \subseteq R$ for all $t \in [0,1]$, then $l=ar \oplus k$ for some $a,r \in A_t$ and $k \in J_t$, implies that $a=ara \oplus ka$. Since $ka \in aA_t \boxtimes J_t = 0$, then a=ara implies that A_t is VN-regular subring. Then A is VN-regular fuzzy ring.

Proposition 3.14:-A finite direct sum of VN-regular fuzzy rings is VN-regular fuzzy ring .

Proof:- By definition $A_i : R_i = I$ (i=1,2,....,n).($\oplus A_i$)($\oplus (x_i)$)= $\oplus A_i (x_i)$, i=1,2,...,n. Then it is clear that :-

1. $(\oplus A_i)(\oplus (x_i - y_i)) \ge \min\{(\oplus A_i)(\oplus x_i), (\oplus A_i)(\oplus y_i)\}.$ 2. $(\oplus$

 $A_i)(\oplus (x_i.y_i)) \ge \min\{(\oplus A_i)(\oplus x_i), (\oplus A_i)(\oplus y_i)\}.$

Therefore $\oplus A_i$ is a fuzzy ring .

To prove that $\oplus A_i$ is VN-regular fuzzy ring ,when each A_i is VN-regular fuzzy ring (i=1,2,...,n).Let $\oplus a_i \in \oplus A_i$. Then for each $a_i \in A_i$ there exists $b_i \in A_i$ such that $a_i = a_i.b_i.a_i$ as a fuzzy singleton.Therefore $\oplus b_i \in \oplus A_i$ such that $\oplus a_i = \oplus (a_i.b_i.a_i) = (\oplus a_i)(\oplus b_i)(\oplus a_i) \in \oplus A_i$. This implies that $\oplus A_i$ is VN-regular fuzzy ring.

References:-

1-Zadeh, L.A., "Fuzzy Sets ",Information and control,1965.

2-Liu, W .J., "Fuzzy Invariant Subgroup and Fuzzy Ideal",

Fuzzy Set and Systems ,1982

3-Malik,D.,S.,and Mordeson,J., N., "Fuzzy Prime Ideals of a Ring ", Information and control, 1991.

4-Majeed S.N."On FuzzySubgroups of Abelian Groups " Th M.SC. Thesis University of Baghdad,1999.

5-Shaheed H.H. "On Von Neumann Regular Fuzzy Ring" Th M.SC. Thesis University of Babylon ,2002.